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Abstract

Multi-point flux approximation (MPFA) discretization methods have been applied in the oil industry since the mid

1990s. The discretizations are based on a control volume formulation and the finite difference structure makes general

skew grids and unstructured grids feasible in a fully implicit formulation. MPFA methods are therefore suitable for flow

problems in realistic reservoirs. Monotonicity issues are known to arise for high aspect ratios combined with skewness

of computational grids for MPFA methods. In this paper, we improve the MPFA discretization techniques for general

quadrilateral grids, such that the above difficulties are handled to give a more robust discretization of the governing

equations for fluid flow in porous media. Comparisons to the MPFA O-method are made, and the suggested discreti-

zation is shown to be an improvement in regards to monotonicity. For smooth solutions, the method performs equally

well as the O-method when the convergence is examined.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Numerical simulation of multi-phase porous media flow in three dimensions poses great challenges. The

absolute permeability tensor in the single phase flux expression q = K$u will for general anisotropic, inho-

mogeneous media be a full tensor with discontinuous spatial variability. In practical applications, the multi-

phase flow solutions themselves may also have large spatial and temporal variability, and possibly also

discontinuities in the formation of shocks.
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Control-volume methods have shown themselves to be very well suited in this setting. In particular, con-

trol-volume methods allow fully implicit solution techniques of the governing equations. This allows for

stable solutions without prohibitively restrictive time steps, as may be needed in sequential and IMPES

(implicit pressure, explicit saturation) formulations.

The class of control-volume multi-point flux approximation (MPFAs) methods [1–13] and its conceptual
equivalents [14–17] have proved themselves to be very good extensions of the one-dimensional harmonic

mean, and are easily adaptable to implicit settings. The MPFA methods are defined in two dimensions

for quadrilaterals [1,2,10] and general polygonals [5,6]; and in three dimensions for tetrahedra and hexahe-

dra [4,10], or combinations of these geometric elements [17]. No constraints are imposed on the regularity

of the elements, and the element faces need not match [7–9]. The methods are defined both in physical space

and in transformed reference spaces. Convergence of the methods for discontinuous permeability cases are

investigated numerically in [11,15]. All MPFA methods are locally mass conservative; they also reproduce

uniform flow fields exactly when defined in physical space [11]. However, for very skew elements, or severe
non-aligned anisotropy, the MPFA methods on quadrilaterals display some problems with monotonicity

[12,13].

Alternative discretizations to MPFA methods include finite element (FE) [18–20], discontinuous Galer-

kin (DG) [21], control volume finite element (CVFE) [22,23], mixed finite element (MFE) [24], control vol-

ume mixed finite element (CVMFE) [25,26], hybrid mixed finite element (HMFE) [27], and expanded mixed

finite element (EMFE) [28,29] methods. Although all of these methods have their strengths, in the context

of multi-phase porous media flow some of them may also have drawbacks. In particular, FE lacks local

mass conservation for cases with discontinuous coefficients [30]; DG, MFE and EMFE are computationally
slow due to many more degrees of freedom and indefinite linear systems; CVFE does not handle discontin-

uous permeability satisfactory [22,31] and experiences monotonicity problems [23]; HMFE as well as MFE

are better suited for sequential rather than implicit solution procedures; and CVMFE encounters problems

on general hexahedral cells [26] in three dimensions. For these reasons, MPFA has been chosen for imple-

mentation in simulators such as Eclipse [32], the general purpose research simulator at Stanford [17], and

research simulators at Norsk Hydro [33] and ChevronTexaco [34].

We will herein present an extension of the MPFA methodology, which is an improved method for dis-

cretizations with adverse combinations of grid skewness and aspect ratios combined with permeability
anisotropy. This improves a potential weakness of current MPFA methods.

To fix ideas, we will look at the elliptic model pressure equation arising from porous media flow
�
Z
X
r � ðKrpÞ dV ¼ q; ð1Þ
which relates the pressure p to the sources and sinks q through the permeability K of the medium in a do-
main X. Under appropriate smoothness conditions and zero pressure boundary conditions, Eq. (1) has the

solution [35]
pðxÞ ¼
Z
X
qðnÞGðx; nÞ dn: ð2Þ
The Green�s function G satisfies a maximum principle [36], which together with the zero pressure boundary
condition implies
Gðx; nÞ P 0: ð3Þ

Thus the operator LðqÞ ¼

R
XqðnÞGðx; nÞ dn is monotone (a linear operator L is monotone if either

Lðf Þ 6 0 orLðf Þ P 0 for all fP 0). We would like this consequence of the maximum principle to carry

over to the discrete formulation. The monotonicity property is also desirable for parabolic equations, as

discussed in [6].
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MPFA discretizations yield approximations to Eq. (1) in the form
Fig. 1.

time o
Mp ¼ q; ð4Þ

where M is a banded matrix, and p and q are vectors containing pressures and sources at discrete points,
respectively. The discrete analog to inequality (3) is thatM�1 should be monotone (all matrix entries should

be greater or equal to zero). Recent work has shown that this is frequently not the case [12,13].

One potential hazard of this non-monotone behavior is that unphysical instabilities with respect to the

oil and gas equilibrium may arise [10]. This is sketched in Fig. 1, where a non-physical maximum occurs. If

the pressure of the oil phase in some part of the reservoir is close to the bubble point pressure, dissolved gas

may then appear when it should not be present. In both [12,13] different grids are investigated, and it is

shown that there exist grids for which both the standard MPFA methods (the O- and U-methods) produce

coefficient matrices with a non-monotone inverse. For general cases these grids may have moderate aspect
ratios combined with random perturbations of the corners of rectangular grids, even with homogeneous

isotropic permeability.

This paper will mainly focus on a new MPFA method, which is designed to enhance the monotonicity

for cases known to cause problems for MPFA methods. The new method will fit into the same framework

as the O-method, and the difference between the O-method and the new method is that other interaction

regions will be used.

The rest of the paper is organized as follows: In Section 2, we review the principles behind the MPFA

methods, and in particular the MPFA O-method transmissibilities are derived for a general matching quad-
rilateral grid in two dimensions. Section 3 presents the proposed MPFA Z-method in detail for quadrilat-

erals in two dimensions, and the transmissibilities are derived. A worked example is provided in Section 4,

where the Z-method is applied on a parallelogram grid on a homogeneous medium. This section also con-

tains analytical monotonicity results for parallelogram grids. General quadrilateral grids are discussed in

Section 5, and a distance algorithm is proposed for combining the Z-method and the O-method on an entire

grid. The algorithm is valid for both homogeneous, heterogeneous and anisotropic cases. Section 6 provides

numerical examples that validate the improved discretization for simple solutions. In particular, uniform

flow is shown to be reproduced exactly, and close to second order convergence is indicated for a piecewise
quadratic reference solution on a layered medium with severe permeability anisotropy. Further numerical

results are provided in Section 7, where the emphasis is on monotonicity of the discretization on grids

relevant for field simulations. Finally, Section 8 contains conclusions and a summary.
Function with non-physical maximum resulting in unexpected gas occurrence. Variation along the abscissa can represent either

r spacial variables.



Fig. 2. Entire control volume grid. Control volumes shown by solid lines, interaction regions (dual grid) indicated by dashed lines.
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2. Multi-point flux approximation methodology

All MPFA methods aim to calculate fluxes across cell interfaces (or parts thereof) by combining pressure

values of neighboring cells, or cells that are in the vicinity of an interface. This is to improve on flux dis-

cretizations which only combine pressures from two neighboring grid cells (two point flux approximations).
Such discretizations are generally not valid for grids which are skewed or have general full tensor perme-

ability descriptions. Numerical results which show this are presented in [3,11]. The MPFA discretization

approaches have been presented in detail in [1–17], and good introductions to the methodology can be

found in [10,14]. Only a short summary of the methodology will be given here.

The two-dimensional case for general matching quadrilateral grid cells is illustrated in Fig. 2. The figure

shows a quadrilateral grid (control volumes) for which a dual grid is constructed (dashed lines). The dual

grid cells are called interaction regions, and will define which node pressure values to use for the discrete

fluxes. In particular, four node pressures will be used to express discrete fluxes across the sub-interfaces
within an interaction region in two dimensions. Fig. 3 shows four neighboring cells and an interaction re-

gion for a typical non-orthogonal grid. Four grid cells meet in each corner of a matching grid; furthermore,

four cell interfaces meet at the corners, and four sub-interfaces are therefore contained in the interaction

regions. The common corner is denoted the cluster center of the interaction region. Transmissibilities are

calculated for each of the four sub-interfaces which meet at the corner. The transmissibilities ti,j are the

node pressure weighting factors in a discrete flux approximation, as in the equation
Fig. 3.

dots, a
fi ¼
X4
j¼1

ti;juj: ð5Þ
Here fi is the flux across sub-interface ei, while uj is the pressure at node xj of the interaction region.
Interacting cells for O-method; control volumes indicated by solid lines, interaction region by dashed lines, nodes x1, . . . ,x4 by

nd dividing points �x1; . . . ; �x4 by circles.
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The transmissibility calculations are based on the local information in an interaction region. For each of

the four sub-interfaces, the continuous fluxes are given by
fi ¼ �
Z
Si

Kru � nidA; ð6Þ
where the entities are as follows: Si is sub-interface ei, K is the permeability of the specific cell and ni is the
outer unit normal of Si.

By the assumption that pressures are piecewise linear on each sub-cell in the interaction region, it follows

that $u is piecewise constant within it. The discrete fluxes that follow from Eq. (6) are hence constant, and

using the information about $u on both sides (indicated by + and �) of the sub-interfaces leads to one flux

continuity requirement for each sub-interface ei. I.e.
fi� ¼ fiþ ð7Þ

for each sub-interface ei implies that
�K i�rui�ni ¼ �K iþruiþni: ð8Þ

The transmissibility calculation is completed by a relaxed pressure continuity assumption [10]. For the
O-method the pressures will be assumed to be continuous at each of the four dividing points �x1; . . . ; �x4,

and these points will therefore be referred to as the pressure continuity points. These pressure continuity

points together with the nodes will be used to evaluate the gradients of Eq. (8). We now have 12 restrictions

(four node pressures at x1, . . . ,x4, four pressure continuity points �x1; . . . ; �x4, and four flux continuity con-

ditions over sub-interfaces from Eq. (8)). These balance the 12 degrees of freedom from the linear pressure

variation on each of the sub-cells.

To express a gradient by the three points associated with cell j, it is convenient to introduce vectors mjk,

k = 1,2:
mj1 ¼ Rð�xj2 � xjÞ; mj2 ¼ �Rð�xj1 � xjÞ; ð9Þ

where the second index refers to the local numbering of dividing points in a right handed system. Further,

the matrix R is the rotation matrix given by
R ¼
0 �1

1 0

� �
: ð10Þ
Then the gradient can be expressed by [10]:
ruj ¼
X2
k¼1

1

T j
mjkð�ujk � ujÞ

� �
: ð11Þ
The quantity Tj is the area of the triangle ðxj�xj1�xj2Þ, and is referred to as a variational triangle in MPFA

terminology [10]. As examples of the double indexed variables, �u12 is the pressure at the point �x4, m11 is the

inward normal vector of the segment x1�x4; and m12 is the inward normal vector of the segment x1�x1.

Denoting the vector of the node pressures u = [u1, u2, u3, u4]
T and the vector of dividing point pressures

v ¼ ½�u1; �u2; �u3; �u4�T, the four flux continuity requirements (7) may be rewritten in terms of these:
Av ¼ Bu: ð12Þ

The matrices A and B are 4 · 4 and consist of scalar coefficients, defined by
xijk ¼
�niK jmjk

T j
; ð13Þ
where the quantities are the same as defined above.
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The matrix A will generally be invertible [8], and the dividing point pressures may therefore be eliminated

to obtain
v ¼ A�1Bu: ð14Þ

As explained in detail in [10] the left-hand side of the system (7) can be written as
f ¼ Cv�Du; ð15Þ

where C and D are 4 · 4 (also consisting of scalar coefficients (13)). From Eqs. (14) and (16) it follows that

the O-method fluxes may be expressed as
f ¼ ðCA�1B �DÞu; ð16Þ

and the transmissibility matrix is therefore
T ¼ CA�1B �D:
Each row of this matrix gives the node pressure weights in the flux approximation of the associated edge,

corresponding to the transmissibilities of Eq. (5). The details of the calculations and explicit expressions for

matrices A, B, C and D can be found in [10]. An assembly procedure can now be performed to construct the

global system (4) from the local transmissibility matrices T.
The boundary of the domain will readily be handled by defining an outer layer of artificial grid cells

[2,4,5]. The interaction regions that cover the physical boundary of a domain will then contain two or more

artificial grid cells. No-flow boundary conditions are easily implemented by assuming that the artificial cells

are inactive, such that the fluxes across the corresponding interfaces are zero. More general boundary

conditions for the MPFA O-method have also been handled in [11].

In Section 3, we present the flux discretization for the proposed Z-method. The method will use alterna-

tive interaction regions to the interaction regions used by the O-method. Z-method interaction regions with

associated grid cells are shown in Fig. 4.
3. Derivation of the Z-method

The problems related to monotonicity observed in [12,13] indicate that on isotropic media, grid skewness

may not always be handled properly by MPFA methods.

In [12] the nine-point cell stencil arising from a general control volume (CV) method is investigated,

and sufficient criteria are derived for the method to satisfy monotonicity of the inverse operator for

homogeneous parallelogram grids. A worked example is given, which discusses the MPFA O-method
Fig. 4. Grid points and cells involved in the Z-method: (a) stylized Z; (b) stylized mirrored Z.



Fig. 5. Interacting cells for a Z-method; control volumes indicated by solid lines, interaction region by dashed lines, nodes x1, . . . ,x4 by

dots, and dividing points �x1; . . . ; �x5 by circles.
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discretization. The monotonicity of the inverse coefficient matrix depends on the internal angles of the
parallelograms and the aspect ratios. For aspect ratios close to unity and angles less than 45�, the

O-method fails to produce a coefficient matrix with a positive inverse. For large aspect ratios (which

is frequently encountered in reservoir simulation), severe restrictions apply to the parallelogram angles

in order to secure monotonicity. These results may be explained geometrically (for the O-method) by

the fact that the interacting cells may be located too far from each other when the acute parallelogram

angle is small.

The above discussion motivates the development of the Z-method, as seen on a two-dimensional skew

grid as in Fig. 5. Here, the suggested interaction region is constrained by four grid cells which are not the
logical neighbors as used by the O- and U-methods. The choice of cells will be further discussed in Section

5. The discretization makes use of the nodes x1, . . . ,x4, and the dividing points �x1; . . . ; �x5, and the name is

derived from the stylized Z (or mirrored Z) which connects the nodes of the interacting cells as in Fig. 4. It

should be clear from comparing Figs. 3 and 5 that for very skew grid cell configurations and large aspect

ratios the Z-method can be considered a more natural discretization.

In the development that follows, we solely concern ourselves with discretizations in two dimensions.

While the ideas presented can be extended to three dimensions, this has not been implemented yet.

The details of the Z-method transmissibility calculations use notation from Fig. 5. The three sub-
interfaces (e1, e2, e3) and the four nodes (x1, . . . ,x4) are used for flux calculations as well as the five

additional points ð�x1; . . . ; �x5Þ which are the pressure continuity points. In the following, e2 will refer

to either sub-interface e2A or e2B; the choice of sub-interface will not affect the calculations. In each

of the four interacting cells in Fig. 5 we assume that the pressure variation is linear in sub-cells made

up by the cell node and two or three associated pressure continuity points. As an example, the sub-cell

used for cell 1 uses the node x1 and the continuity points �x1 and �x2, while cell 2 uses the node x2 and

the continuity points �x1; �x2 and �x3.

Flux continuity is posed for the three sub-interfaces labeled e1, . . . ,e3, and an equivalent system to Eq. (8)
is obtained. We also impose full pressure continuity across sub-interfaces e1 and e3, while only continuity at

the point �x3 for the sub-interface e2. In total, this yields 12 conditions on the discrete pressure variation

(four node pressures at x1, . . . ,x4, five pressure continuity points �x1; . . . ; �x5, and three flux continuity con-

ditions over sub-interfaces). In addition to these flux and pressure continuity conditions, the node pressure

and three dividing point pressures in cells 2 and 3 are related by the linear pressure variation in each sub-

cell. These relationships are consequences of the linear pressure variation, and hence do not restrict the

pressure variation further.

Denoting the vectors u = [u1, u2, u3, u4]
T as the pressures at the cell nodes, and v ¼ ½�u1; �u2; �u3; �u4; �u5�T as

the pressure at the dividing points, the local system of flux continuity conditions and pressure relations is

given by Eq. (12). For the Z-method depicted in Fig. 5, the 5 · 5 matrix A and 5 · 4 matrix B are given by
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A ¼

x111 � x122 x112 �x121 0 �0

�x222 0 x232 � x221 0 x232

0 0 x331 �x342 x332 � x341

a41 a42 a43 0 0

0 0 a53 a54 a55

2
6666664

3
7777775
; ð17Þ
and
B ¼

x111 þ x112 �x121 � x122 0 0

0 �x221 � x222 x231 þ x232 0

0 0 x331 þ x332 �x341 � x342

0 b42 0 0

0 0 b53 0

2
6666664

3
7777775
: ð18Þ
The elements of row 4 and 5 of A and B are the relations among the pressures at nodes and dividing points

in cell 2 and 3 of Fig. 5 due to the linear pressure approximation inside each cell:
�u2 þ
1

jx2 � �x2j
jn1 � �x2jðu2 � �u2Þ ¼ �u1 þ

1

j�x3 � �x1j
jn1 � �x1jð�u3 � �u1Þ; ð19Þ
and
�u4 þ
1

jx3 � �x4j
jn2 � �x4jðu3 � �u4Þ ¼ �u3 þ

1

j�x5 � �x3j
jn2 � �x3jð�u5 � �u3Þ: ð20Þ
The additional points n1 and n2 are the diagonal intersections of the quadrilaterals ðx2; �x1; �x2; �x3Þ and

ðx3; �x3; �x4; �x5Þ, respectively.
Again the left-hand side of Eq. (8) may be used to write the three sub-interface fluxes as functions of the

node pressures and the dividing point pressures:
f ¼ C3�5v�D3�4u; ð21Þ

where the indexing of the matrices C and D states their sizes. Equivalently to Eq. (16) we can now write out

the discrete flux
f ¼ ðC3�5A
�1B �D3�4Þu; ð22Þ
where each line of Eq. (22) corresponds to an instantation of Eq. (5).

The sub-interface fluxes can be combined to construct the coefficient matrix which corresponds to the

continuous operator LðlÞ ¼ �
R
r � ðKrlÞ dV on each cell by combining appropriate elements of f from

Eq. (22).
4. Worked example of Z-method

We now present the Z-method for the case of uniform parallelogram grids, with an interaction region

with the logical shape of e.g. cells 1, 2, 4 and 9 in Fig. 6(a). Three other Z-method molecules could equally

well be chosen instead, based on rotation and symmetry. We will later choose the interaction region on

which to base the discretization, according to the skewness and aspect ratio of the grid and the anisotropy

of the medium. This will be further discussed in Section 5.



Fig. 6. Parallelogram cell (b) and local numbering (a) of cells in cluster.
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The parallelogram grid cells are described by the vectors a1 and a2 in Fig. 6(b). These vectors are normal

to the edges of the parallelogram, scaled such that ai equals the length of the edge. The local system of equa-

tions may then be written out explicitly by coefficients that are combinations of the following three

parameters
a ¼ 1

V
aT1Ka1; b ¼ 1

V
aT2Ka2; c ¼ 1

V
aT1Ka2: ð23Þ
The system of flux continuity equations (8) approximated using Eq. (11) then reads
bð�u1 � u1Þ � cð�u2 � �u1Þ ¼ �cð�u3 � u2Þ � bð�u1 � u2Þ;
að�u3 � u2Þ þ cð�u1 � u2Þ ¼ cðu3 � �u5Þ � að�u3 � u3Þ;
bð�u5 � u4Þ � cð�u4 � �u5Þ ¼ �cð�u3 � u3Þ � bð�u5 � u3Þ:

ð24Þ
In addition, Eqs. (19) and (20) simplify to
�u1 þ �u3 � ð�u2 þ u2Þ ¼ 0;

�u5 þ �u3 � ðu3 þ �u4Þ ¼ 0:
ð25Þ
If we combine Eqs. (24) and (25), as in Section 3, we then arrive at the transmissibilities:
T ¼ 1

4a

c2 � 2ab 2abþ 2ac� c2 �c2 � 2ac c2

�ac acþ 2a2 �ac� 2a2 ac

�c2 c2 þ 2ac �2ab� 2acþ c2 �c2 þ 2ab

2
64

3
75: ð26Þ
When combined into discrete (full) edge fluxes, we get in the i-direction:
f1;2 ¼ �2ðt2;1u9 þ t2;2u2 þ t2;3u1 þ t2;4u4Þ ¼ aþ c
2

� �
ðu1 � u2Þ �

c
2
ðu4 � u9Þ; ð27Þ
and similarly in the j-direction
f1;4 ¼ �ððt1;1 þ t3;3Þu1 þ ðt1;2 þ t3;4Þu4 þ t1;3u5 þ t3;2u2 þ t1;4u16 þ t3;1u9Þ

¼ bþ c
2
� c2

2a

� �
ðu1 � u2Þ �

c
2
þ c2

4a

� �
ðu5 � u3Þ �

c2

4a
ðu16 � u9Þ: ð28Þ
Here the ti,j are the elements of T, fi,j refers to the flux between cells i and j, and ui refers to the pressure in

cell i. The cells are numbered as in Fig. 6(a). We now combine f1,2, f1,4, f1,6 and f1,8 to obtain a nine-point

stencil, with weights mi. The elements of the coefficient matrix M in Eq. (4) are those of the nine-point

stencil,
m2 ¼ �a� c� c2

4a
; m4 ¼ �b� cþ c2

2a
; m5 ¼ cþ c2

2a
; m16 ¼ � c2

4a
: ð29Þ
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The numbering again refers to Fig. 6(a). The coefficient matrix is symmetric such that m6 = m2, m8 = m4,

m9 = m5 and m24 = m16. To retain zero flow on constant pressure fields, m1 = �sumi6¼1, where all mi not de-

fined above equal zero. Note that m16 and m24 are weightings of cells outside the inner nine cells used by

traditional nine-point discretizations, while the cells m7 and m3 are not used.

For the parallelogram grid, the system matrix arising from the Z-method may be compared to the cor-
responding matrix obtained from the O-method. The coefficients mi for the O-method may be found in

either [10] or [12]. Since a > 0 from the definition in Eq. (23) it follows that
signðM�1Þ ¼ signððM=aÞ�1Þ: ð30Þ

We therefore study the matrix M 0 = M/a. From Eq. (29) we observe that this matrix is a function of only

two parameters b/a and c/a. Further, the invertibility of the definitions of a, b, and c lets us consider the

matrix M 0 as a function of the coordinates of either a1 or a2. Together with the choice of Z-method accord-

ing to Section 5, we therefore choose, without loss of generality, the media to be isotropic, a2 = [�1,0]T, and

ia1i < 1,a1 = [a1,1, a1,2]
T, a1,i P 0. Our two variables are then the two coordinates of a1. Every grid point in

Fig. 7(a) represents the vector a1 = [a1,1,a1,2]
T, such that X1 is the region containing parallelogram grids

where both Z- and O-methods have monotone inverses. Conversely, both methods have non-monotone in-

verses in the regions labeled X4. The intermediate regions where only the Z- or O- methods have the desired
monotone properties are denoted as X2 and X3, respectively. The region X5 outside the unity circle can be

disregarded based on the symmetry of the discretization with respect to a1 and a2. The region ia1i < 0.1

(high aspect ratios or severe anisotropy) is particularly interesting with respect to reservoir simulation,

and a more detailed view of this region is shown in Fig. 7(b).

It should also be pointed out that for c = 0, termed K-orthogonality in [10], the coefficients in relations

Eq. (29) are all less than or equal to zero. This implies that the system matrix is an M-matrix, and its inverse

is monotone. A matrix A is an M-matrix if and only if the entries ai,j satisfy [37]:
ai;i > 0 8i; ð31aÞ
ai;j 6 0 8i; j; i 6¼ j; ð31bÞX

i

diai;j P 0 8j; ð31cÞ
with strict inequality for at least one of Eqs. (31c) and some positive vector d. Further, when c = �2a,
m2 = m5 = 0, the Z-method discretization reduces to a five-point scheme, which is also an M-matrix. In fact,
Fig. 7. Monotonicity regions for the MPFA Z-method (dashed lines) and the O-method (continuous lines).
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while the system matrix arising from an O-method is never an M-matrix for c 6¼ 0, the system matrix arising

from the Z-method discretization is an M-matrix in the in the entire regions X1 and X2 of Fig. 7.

To see the extent of where the Z-method system matrix is an M-matrix, recall that M-matrices require all

non-diagonal elements to be non-positive. We use the elementary properties a > 0, b > 0 and |c| < max(a,b).

The interaction region chosen in this worked example (cells 1, 2, 4 and 9 in Fig. 6(a)) seems ideal when c 6 0
and a 6 b. Then the M-matrix constraints mi 6 0 from Eq. (31b) then imply that
Fig. 8

transm
c P �2a; c P a�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 2ab

p
; ð32Þ
are the conditions that must be met if the system matrix is to be an M-matrix. For grids where c P 0 or

a P b, symmetry arguments define the appropriate rotation or reflection of the Z-method and correspond-

ing constraints. We conclude that when
jcj 6 2minða; bÞ ð33aÞ

and
jcj 6 minð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 2ab

p
� a;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 2ab

p
� bÞ; ð33bÞ
there exists a Z-method discretization for which the system matrix is an M-matrix.
5. Selection algorithm for general grids

In the previous section, we observed that the Z-method satisfies monotonicity properties for a larger set

of grids than the O-method. However, on less skewed grids, both Z- and O-method discretizations have

monotone inverses. The motivation for the Z-method is the location of the nodes close to the sub-interface

over which we want to evaluate fluxes. Thus it is natural that when the grid skewness is small, there is no

need for the Z-method interaction region. Therefore, we propose to combine the Z- and O-methods based

on closest point properties.

5.1. Homogeneous cases

We perform the combined flux calculations by the following ideas: For each inner corner of the grid,

transmissibilities will be calculated for each of the four sub-interfaces that meet in the grid corner. Each

sub-interface is a part of a whole edge, such that a whole edge is divided in two equal parts, which are then

assigned to two opposite corners. The four sub-interfaces belonging to a specific corner xk are shown in Fig.

8(a). Each sub-interface is successively defined as a central edge for transmissibility calculations, similar to

the procedure in [5].
. (a) Corner xk with four associated sub-interfaces. (b) Eight cells are candidates for interacting cells to determine

issibilities for the central edge.



J.M. Nordbotten, G.T. Eigestad / Journal of Computational Physics 203 (2005) 744–760 755
For each of the sub-interfaces the transmissibilities may be evaluated by either the O-method or the

Z-method. The situation for the first local sub-interface belonging to the corner xk is shown in Fig. 8(b).

Eight cells are candidates for being the four interacting cells that determine the flux across this edge.

The distance from each cell node of the candidate cells 3–8 to the corner xk determines which discretization

should be applied. If either cell 5, 6, 7 or 8 is closest, a Z-molecule involving this cell should be applied. If
cell 3 is closest, and cell 5 or 8 are second closest, then the Z-molecule involving the two closest cells should

be used. The same holds if cell 4 is closest and cell 6 or 7 are second closest. In all other cases the O-method

should be preferred. This will be the case for the example depicted in Fig. 8(b).

5.2. Extension to heterogeneous media

The geometric distance in Section 5.1 may be generalized to account for heterogeneous and aniso-

tropic cases. We accomplish this by scaling the distance by the inverse of the permeability matrix. The
distance from the cluster center to the nodes that are not nearest neighbor cells then consists of two

terms. As an example, the distance function for local cell 5 in the cell configuration depicted in Fig. 8

is given by
d5 ¼ min
xI2e1;5

jðK�1
1 ðxI � xCÞj þ jK�1

5 ðxI � x5Þj
� 	

: ð34Þ
The point xC is the cluster center, x5 is the node of cell 5 and e1,5 is the interface between cells 1 and 5. The

minimum is taken over all points on the interface. This weighting function accounts for both heterogene-

ities and anisotropy, and using this general distance function for all eight nodes, the same selection algo-
rithm as in Section 5.1 may be used. Note that this seems to be a reasonable first approach to handling

general cases, but that even better selection approaches could be based on comparison of calculated trans-

missibilities by the different discretization methods. For very distorted grids and general permeabilities, the

effective distances may not fully explain which discretization technique is the best locally.

For practical purposes we are limited to search for a minimum over a discrete set of points on the line

segment e1,5 in Eq. (34). However, keeping in mind that Eq. (34) is primarily an order of magnitude com-

putation, this should not have significant effects on monotonicity. Numerical experiments where the preci-

sion in finding the minima is varied verify this claim.
6. Validation of the method

In this section, we focus on the treatment of uniform flow and convergence of known problems on chal-

lenging grids, which are relevant for reservoir simulation.

6.1. Uniform flow

All MPFA discretization methods defined on the physical space can be shown to have the property that

the numerical solution of Eq. (1) is exact for uniform flow.

For the Z-method as formulated, the result follows from the observation that the system of Eqs. (21) has

a unique solution, and that linear flow satisfies all Eqs. (12) due to the linear approximation of the gradient

in Eq. (11). The result is intuitive, but a stringent proof is given in [11] for the O-method. The result can also

be extended to the case of piecewise uniform flow, using the ideas in the proof for reproduction of uniform

flow in [11].
When the O-method and Z-method are combined, the same result holds, and a specific case is shown

in Fig. 9, where the pressure field with $u = [1,0]T is applied on a selected grid which resembles relevant



Fig. 9. Numerical solution for test example; uniform flow in x-direction.
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geometry for a North Sea reservoir. The discretization uses the selection algorithm described in Section 5.1,

and roughly 47% of the half edges are handled by the Z-method.

6.2. Convergence

A wide range of numerical convergence examples for the MPFA O-method can be found in [11]. Those
examples are both for homogeneous and heterogeneous cases, and second order convergence of pressure

and normal fluxes is observed for smooth solutions. Comparison of MPFA methods with other established

methods has been undertaken in previous studies [38,39]. For this short validation of the Z-method, we will

therefore limit ourselves to comparison of pressure convergence with the MPFA O-method. We choose an

example from [15], where the medium is layered, and the anisotropic permeabilities are given by
K l ¼
50 0

0 1

� �
; K r ¼

1 0

0 10

� �
: ð35Þ
The analytical solution for this problem is piecewise quadratic, and we solve the discrete problem on grids

which contain skew grid cells; one refinement level is depicted in Fig. 10. The permeabilities Kl apply for the

cells to the left of the grid line x = 1/2, and Kr apply for the cells to the right of x = 1/2. Boundary conditions

are implemented by specifying the exact pressures at nodes in an artificial layer of grid cells that surround
Fig. 10. One grid refinement level; piecewise quadratic problem solved on grid sequence.



Fig. 11. Convergence behavior for a piecewise quadratic solution; L2 error vs. refinement level. The combined O- and Z-methods

perform slightly better than the pure O-method in terms of the L2 error.
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the entire domain. This is for convenience only, and general Dirichlet boundary condition can easily be

implemented by the ideas in [11].

The convergence behavior for the pressure for uniform refinement of the grid is shown in Fig. 11, where

six levels of refinement are included. The error is measured in the discrete L2-norm given by
eL2
¼

X
i

ðAiðpex;i � piÞ
2Þ

 !1=2

; ð36Þ
where Ai is the area of grid cell i, pex,i is the exact solution evaluated at node i, and pi is the discrete pressure
at node i; see [11] for details.

The observed convergence is practically h2 for the last level of refinements for the combined O- and

Z-methods, and the same is observed for the pure O-method. The L2-errors are 5–6% smaller for the com-

bined method in the earliest levels, but only 2–3% better in the last refinements. This is probably explained

by the fact that the ratio of cell edges that apply the Z-method discretization is not constant throughout the

refinement procedure.
7. Monotonicity results

In the following section, we compare the monotonicity properties of the classical O-method to the com-

bined O- and Z-methods. The system matrix when we refer to the Z-method below is a combination of

O-method and Z-method transmissibilities according to Section 5. The grids for which we investigate the

proposed discretization are relevant for reservoir simulation, and both homogeneous and heterogeneous

cases are included.

7.1. Homogeneous cases

Two-dimensional models may be used as simple models for North Sea Reservoirs. Characteristic geom-

etry and geology for a realistic reservoir is indicated by the grid of Fig. 9. The grid cells may be very

thin compared to the length and width of the cells; the aspect ratio is up to 200–300 after a correction
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for anisotropy. For the specific example of Fig. 9, the coefficient matrix arising from the Z-method discre-

tization is a matrix with a monotone inverse. The pure O-method does not give a coefficient matrix with a

monotone inverse.

The Z-method discretization is now explored on a large set of such grids. We generate grid sequences

where the length of the pillar lines (see [40]) of the grids are kept constant. The pillar lines are moved up-
wards linearly with an iteration parameter k, but with different velocities, such that the grid becomes skewer

with the parameter k.

Our investigations are based on 1000 initial grids, where the lower boundary of each initial grid is a pos-

itive perturbation of a horizontal line. The limitations on the perturbations of the grids is that local dip

downs (second order differences in pillar heights) should not exceed two grid cells.

The 1000 initial grids are skewed by the parameter k until non-monotone behavior is observed. The val-

ues of k for which the Z-method looses monotonicity of the inverse operator is shown in Fig. 12(a), and we

see that we get approximately a Gaussian distribution. When comparing these results to the pure O-method,
we use the quantity
Fig. 12

impro
gi ¼
ki;Z � ki;O

ki;O
: ð37Þ
The first subscript refers to the final iteration count that bounds the extent of monotonicity for the two

methods, and the second subscript denotes the method. Therefore, gi gives a measure of how much further

the Z-method can be skewed than the O-method. The results are shown in Fig. 12(b), and we see that the
improvement of the Z-method compared to the pure O-method peaks around 30%.

We should comment that to further improve the system matrices, the large aspect ratios may be reduced

by refinement of the grid in the x-direction.

7.2. Layered media

The grids in Section 7.1 may also be used in combination with heterogeneity. As an example we inves-

tigate the grid in Fig. 9, where we divide the domain into three layers with permeabilities K1 = 3I, K2 = 8I
and K3 = 7I, where the numbering of the layers is upwards. For this case, the dynamic transmissibility

approach handles around 18% more grids than the O-method when the grid experiences the same variation

as in Section 7.1. Experiments have also been performed with random permeability distributions of all 12
. (a) Distribution of iteration parameter when coefficient matrix becomes non-positive for Z-method. (b) Distribution of relative

vement of Z-method compared to the pure O-method.
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layers of the grid. The same trends as above are observed in respect to the performance of the Z-method

versus the pure O-method. For grids similar to the ones used here, we therefore conclude that the Z-method

provides a better discretization than the O-method in terms of monotonicity, without loss of convergence.
8. Conclusions

In this paper, we have presented a new approach for generating MPFA transmissibilities for cases of

skew grids. This transmissibility generation is used locally in grids where a distance criterium is used to

choose either the O-method or the new Z-method. For parallelogram grids on homogeneous media the

coefficient matrix given by the Z-method is not only inverse monotone for a wider range of grids than

the O-method; it is also an M-matrix. This is in contrast to the O-method which only results in M-matrices

on K-orthogonal grids. The good monotonicity results are also observed in the extension to non-uniform
grids.

Numerical results have been presented that shows an improvement of the MPFA discretization in

respect to monotonicity. Convergence results for smooth solutions indicate that the method performs

equally well as the O-method.
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